World Brightest (Class)
J-PARC RF-Driven H$^-$ Ion Source for High Energy Accelerators

Akira Ueno, K. Ohkoshi, K. Ikegami, A. Takagi, S. H. Asano, and H. Oguri

J-PARC Center, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195, Japan
CONTENTS

• J-PARC STATUS
• EXPERIMENTAL SETUP & METHODS
• EFFECTS OF IMPURITY ELEMENTS
• CONCLUSIONS

* NIBS2016 Poster Presentations on J-PARC-IS: TueP23 & 22
 “Status of the RF-driven H⁻ ion source for J-PARC linac”
 “Emittance Evaluation Admissible as Standard Method of
 J-PARC RF-Driven H⁻ Ion Source”
 :base cor., 100&95%beam def.
J-PARC (Japan Proton Accelerator Research Complex)

Materials and Life Science Experimental Facility

Hadron Experimental Facility

LINAC (330m)
- 50mA (40mA)
- 500μs × 25Hz
- IS: 58mA (45mA)

25Hz 3GeV Synchrotron
- 1MW (0.5 → 0.2MW)

0.4Hz 30GeV Synchrotron
- 0.75MW (0.4MW)

to Super-Kamiokande (Neutrino Experimental Facility)
Cross-sectional view of setup of IS-TS. Thick PE(16mm-45°:1.5I₇⁻), AMFC(1.1I₇⁻), Tₚₑ~70 °C(0.75εₕₚₑₓ/γ), 50W-CW-30MHz RF igniter(large φₚₑ=9mm,17SCCM,pulse H₂)
EFFECTS OF IMPURITY ELEMENTS
bursty fluctuations (Ar and N\textsubscript{2}) of pressure (P)

Observed bursty fluctuations of vacuum pressure (P) shown as relationship between time after TMPs start and vacuum pressure.

→ No bursty P fractuation
& 2~3 times improved pumping speed
from 1 atm→5×10-5 Pa

Photo of O-ring groove of end-plate and cross-sectional drawings of O-ring groove with and without ventilation pathway for confined Ar and N\textsubscript{2}.
Drawings of half-sets of various RFMs:

(a) for #2~6: operated stably with intermittent slight Cs injection,

(b) for #7': with O-ring groove ventilation pathways: easy operated at TS,

c) for #6': with inv. ext. mag. O-ring groove vent. 700°C, 24h baked PCH (less impurity) slightly difficult to operate

d) for #6: operated stably with intermittent slight Cs injection,

#2 ~6 → #7'

Ar&N₂ Ar&N₂

stable stable

Measured horizontal magnetic field (Bx) on beam axis produced by RFMs and ESMs for #0~#2~6 (blue or dark-gray in gray scale dashed line) and #7' (red or gray solid line).
EFFECTS OF IMPURITY ELEMENTS
with Ar&N$_2$ → without Ar&N$_2$ & low RFF

#4
Ar&N$_2$
0.291π
0.925
41.6kW

#7'
0.269π
0.936
26.4kW
EFFECTS OF IMPURITY ELEMENTS
with Ar&N$_2$→ without Ar&N$_2$ & low RFF

Waveforms of 2 MHz-RF forward and reflected voltages (trace1 and trace2), H$^-$ ion beam intensity (IH- 20mA/Div. : trace3) and extraction current (I$_{ext}$ 100mA/Div. : trace4)

* ϕ_{PE}=9mm, Q_{H2}=17SCCM by CW30MHzRF(50W)

#2~6 with Ar&N$_2$
~10% I$_H$- claimed by ring-groups
due to large Cs reduction

#7' without Ar&N$_2$
very flat flat-top
due to small Cs reduction

NIBS2016
2016/9/13
@Oxford
EFFECTS OF IMPURITY ELEMENTS

pre-conditioning procedure & 8h 50kW&5%duty cond.

(pre-cond. day) Set $T_{PE} = 300^\circ C$ and wait $P = 1.5 \times 10^{-5} \text{ Pa}$ (2~3 h), keep $T_{PE} = 300^\circ C$ and $P_{2MHz} = 25\text{kW}&2.5\%\text{duty cond.}$ & RFs&H_2 off(1.5\times10^{-5}\text{Pa within 15min}) →32\text{kW}→38\text{kW}→42\text{kW}→46\text{kW}→50\text{kW}$ (6~5 h)

(1st beam day) Set $T_{PE} = 300^\circ C$ and $50\text{kW}&5\%\text{duty}$ ~20min, set $T_{PE} = 70^\circ C$, ~15\text{kW}&2.5\%\text{duty}$ and I_{H^-} extraction with $I_{ext} < 300\text{mA}$ →(gradually increase P_{2MHz} by 2~4h)~26~30\text{kW}$ and $I_{H^-} = 66 \text{ mA}$

(2nd beam day) “same procedure”

(3rd beam day) “same procedure”

(50kW&5%duty cond. day) Set $T_{PE} = 300^\circ C$ and 8h 50kW&5%duty cond.

(1st beam day) Set $T_{PE} = 300^\circ C$ and 50kW&5%duty ~20min, set $T_{PE} = 70^\circ C$, ~15\text{kW}&2.5\%\text{duty}$ and I_{H^-} extraction with $I_{ext} < 300\text{mA}$ →(gradually increase P_{2MHz} by ~4h)~26~30\text{kW}$ and $I_{H^-} = 66 \text{ mA}$

(2nd beam day) “same procedure”
EFFECTS OF IMPURITY ELEMENTS

before→after 8h 50kW & 5%-duty cond.

before cond. #7'
0.269\pi
0.936
26.4kW

after 8h
50kW
50Hz cond.
#7'
0.229\pi
0.942
29~28 kW
for 4h
EFFECTS OF IMPURITY ELEMENTS
brand-new #7' → 700°C 24h baked #6' (less impurity, inv. ext. mag.)

2MHz-RF Plasma emission spectrums for #7' (red solid line) and #6' (blue dashed line).

Please teach us the candidate for the element(s) emitting 250 or lower ~ 400 nm.

Drawings of half-sets of various RFMs:
(b) for #7' (with O-ring groove ventilation pathways) : easy operated at TS,
(d) #6' with inverse external filter magnets : slightly difficult to operate due to weak Cs reduction force.
EFFECTS OF IMPURITY ELEMENTS after 8h-50kw-50Hz cond. #7' & #6' RFF&inv.ext.

#7' 0.229π 0.942 29~28kW for 4h

#6' 0.233π 0.945 for 1h 26.1kW insuf. Cs red.
EFFECTS OF IMPURITY ELEMENTS

on 3rd beam day after 8h T_{PE}=300^\circ C cond. by insuf. H\textsubscript{2}Os

insuf. H\textsubscript{2}Os

#6'

0.396\pi

0.898

Trace2D back. trace

good agree. with BEAMORBT simu.

±100mrad

>>

±65mrad
Relationship between principal parameters effective to H^- ion emittances and measured emittances ($\varepsilon_{95\%\text{nrm}sx}$ and $\varepsilon_{95\%\text{nrm}sy}$).

Photo of H_2Os feeder composed with 13 cm pipe as H_2O reservoir of 1.6 cc, 15μm-filter (Swagelok SS-4FW-15), two stop valves, purge valve and double pattern metering valve (Swagelok SS-SS2-D) with C_v-value of 0.0004. \rightarrow no emittance expansion
CONCLUSIONS

(1) Improvements by Ar and N_2 elimination & \simhalf rod-filter-field
- $\varepsilon_{95\% \text{nrms} x/y} = 0.29 \rightarrow 0.27 \, \pi \text{mm} \cdot \text{mrad}$ by no chem. effects of N_2? (AlN)
- $P_{2\text{MHzRF}} \sim 40\text{kHz} \rightarrow 26 \sim 30\text{kHz}$ by low rod-filter-field $\rightarrow \sim 1 \text{ year life}$
- $10\% I_{H^-} \text{ tilt} \rightarrow \text{flat pulse} \quad \text{by smaller Cs reduction rate}$
 $\rightarrow 2 \sim 3 \times$ times faster pumping speed from 1atm $\rightarrow 15 \times 10^{-5}\text{Pa}$

(2) $T_{PE} = 300^\circ\text{C} \& 8\text{h} 50\text{kW} 5\% \text{duty conditioning}$
- $\varepsilon_{95\% \text{nrms} x/y} = 0.27 \rightarrow 0.23 \, \pi \text{mm} \cdot \text{mrad}$ for 4h by less impurity?

(3) Effects of $700^\circ\text{C} 24\text{ h} \text{ baking in vacuum furnace (less impurity)}$
 \rightarrow RFFs for brand-new PCH + inv. ext. mag. near optimum
 *gapped RFFs instead of + inv. ext. mag. will be tested

(4) Slight $H_2\text{Os near plasma electrode beam hole for low } T_{PE} = 70^\circ\text{C}$
 $\text{deform meniscus} \& \text{reduce divergence-angle} \pm 100 \rightarrow \pm 65\text{mrad} \& \varepsilon$
 ($H_2\text{Os feeder with } 15\mu\text{m-filter etc. is supplying suitable } H_2\text{Os}$)
 *Deformation mechanism is expected to be solved by simulation.

Thank you for your attention.

ACKNOWLEDGMENT

The authors wish to express their sincere thanks to Dr. Martin P. Stockli of the SNS and SNS ion-source group members for their support to purchase internal-RF-antennas and their information on the SNS RF-driven H^- ion-source.
(a) #7: 95% beam distribution
- Fit norm $1.5 \pi e_l \alpha_x = 1.499, \beta_x = 0.221$
- $I_H = 46 \text{mA}, P_{2\text{MHzRF}} = 18.5 \text{kW}$
- $\gamma_{95\%\text{rms}} = 0.226 \pi \text{mm} \cdot \text{mrad}$

(b) #7: 100% beam distribution
- 95% fit norm $1.5 \pi e_l \alpha_x = 1.499, \beta_x = 0.221$
- 100% fit norm $1.5 \pi e_l \alpha_x = 1.290, \beta_x = 0.207$
- I_{SFC} used to correct base
- $I_H = 46 \text{mA}, P_{2\text{MHzRF}} = 18.5 \text{kW}$
- $\gamma_{100\%\text{rms}} = 0.271 \pi \text{mm} \cdot \text{mrad}$

(c) #7: Frac in 100% beam with 95% fit el
- $f_{\text{in}}(1.5) = 0.937 (43.1 \text{mA})$
- $I_H = 46 \text{mA}, P_{2\text{MHzRF}} = 18.4 \text{kW}$
S-SFC EMITTANCE MONITOR

(movable Slit & movable Slit with Faraday Cup)

Phot of a set of S-SFC emittance monitor heads.

Drawing of a set of S-SFC emittance monitor heads.